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Abstract. We propose a simple but practical scheme to implement a three-qubit Toffoli gate by a single
resonant interaction in a trapped ion system. The scheme does not require two-qubit controlled-NOT gates
but uses a three-qubit phase gate and two Hadamard gates, where the phase gate can be implemented by
only a single resonant interaction of the trapped ions with the first lower vibrational sideband mode. Both
the situations, with and without spontaneous ionic emission, are investigated. Discussions are made for
the advantages and the experimental feasibility of our scheme.

PACS. 03.67.-a Quantum information – 42.50.Dv Nonclassical states of the electromagnetic field, including
entangled photon states; quantum state engineering and measurements

QICS. 14.80.+f Quantum computation with fixed couplings – 14.90.+l Quantum computation with limited
local control

Shor’s discovery of a polynomial-time quantum factoring
algorithm [1], and Grover’s search [2] for an item with a
quantum computer from an unsorted list system, have di-
rectly induced the extensive studies on quantum informa-
tion processing. Although the building blocks of quantum
computers are one- and two-qubit logic gates [3], universal
multi-qubit operations of the form Cn−NOT (n � 2) are
very useful for quantum computation [4] because a direct
implementation of Cn − NOT gates requires a shorter
gating time than implementations consisting of a series
of one- and two-qubit operations. In the NMR system,
some general methods for creating Cn −NOT gates have
been proposed [5]. Recently, a scheme for the realization of
conditional quantum gates has been proposed, including a
N -atom Toffoli gate and some other nonlocal gates on re-
mote atoms, through cavity-assisted photon scattering [6],
in which single photon detectors and a series of linear opti-
cal elements are necessary. An alternative scheme for the
three-qubit Toffoli gate could be found in [7], based on
vacuum-induced Stark shifts using a collective system in
a high-quality dispersive cavity. Nevertheless, the Toffoli
gate in a trapped ion system has not yet been achieved
experimentally.

In this paper, we propose a practical scheme to imple-
ment a three-qubit Toffoli gate by only a single resonant
interaction in a trapped ion system. The scheme does not
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require two-qubit controlled-NOT gates but uses a three-
qubit phase gate and two Hadamard gates to construct the
Toffoli gate. We will focus on a phase gate implemented
by using laser beams to excite the trapped ions simultane-
ously. Our scheme is quite simple because it does not use
the vibrational mode as the data bus and only requires one
resonant interaction. Also the required interaction time is
very short due to the resonant interaction. Moreover, our
scheme is within the reach of current cavity trapped ion
techniques.

First, the resonant interaction ofN three-level trapped
ions with several laser beams is considered. The ionic in-
ternal states can be expressed by |ij〉, |gj〉, and |ej〉, with
|gj〉 and |ij〉 being states lower than |ej〉. In our scheme,
the states |ij〉 are not involved in the interaction with the
vibrational mode. The computational basis is spanned by
the atomic states {|g1〉, |e1〉, |gk〉, |ik〉, k = 2, ..., N}. As-
sume that the N ions are confined in a linear trap and
then each ion is excited by a laser. All lasers are tuned
to the first lower vibrational sideband. In the Lamb-Dicke
limit, the Hamiltonian in units of � = 1 is

Hi =
N∑

j=1

iηΩj(a+S−
j e

iφj − aS+
j e

−iφj ), (1)

where Ωj and φj (j = 1, . . .N) are the Rabi frequen-
cies and phases of the laser fields, and S+

j = |ej〉〈gj | and
S−

j = |gj〉〈ej | are the ionic spin operators for flipping
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the system between states, respectively. a+ (a) is the cre-
ation (annihilation) operator for the first lower vibrational
mode. Furthermore, by assuming that φj = −π/2, equa-
tion (1) reduces to

Hi =
N∑

j=1

ηΩj(a+S−
j + aS+

j ). (2)

If the ions and the vibrational mode are initially in
the state

∏N
j=2|e1〉|gj〉 and the vacuum state |0〉, respec-

tively. The evolution of the system is obtained straight-
forwardly by,

|ψ(t)〉 = U(t)
N∏

j=2

|e1〉 |gj〉 |0〉

= exp[−it
N∑

j=1

ηΩj(a
+S−

j + aS+
j )]

N∏

j=2

|e1〉 |gj〉 |0〉

= [Ω2
1/Ω

2 cos(ηΩt) + (Ω2 −Ω2
1)/Ω2]

N∏

j=2

|e1〉 |gj〉 |0〉

+Ω1/Ω
2 {cos(ηΩt) − 1}

N∑

k=2

Ωk |g1〉 |ek〉

×
N∏

j=2,j �=k

|gj〉 |0〉 − iΩ1/Ω sin(ηΩt)
N∏

j=1

|gj〉 |1〉, (3)

where Ω =
√∑N

j=1Ω
2
j . Before going further, let us first

consider two other simple cases. If the N trapped ions are
initially in the state

∏N
j=2|e1〉|ij〉, then the ions, except

the first one, do not interact with the vibrational mode.
So we acquire the corresponding time evolution

|ψ1(t)〉 = U(t)
N∏

j=2

|e1〉 |ij〉 |0〉

= [cos(ηΩ1t) |e1〉 |0〉 − i sin(ηΩ1t) |g1〉 |1〉]
N∏

j=2

|ij〉.
(4)

While if the N ions are initially in the state
∏N

j=2,j �=k |e1〉|gk〉|ij〉, then we only have the first and the
kth ions interacting with the cavity mode, as shown below,

|ψk(t)〉 = U(t)
N∏

j=2,j �=k

|e1〉 |gk〉 |ij〉 |0〉

= [Ω2
1/Ω

′2
k cos(ηΩ′

kt) + (Ω′2
k −Ω2

1)/Ω′2
k ]

×
N∏

j=2,j �=k

|e1〉 |gk〉 |ij〉 |0〉

+Ω1Ωk/Ω
′2
k [cos(ηΩ′

kt)−1] |g1〉 |ek〉
N∏

j=2,j �=k

|ij〉 |0〉

− iΩ1/Ω
′
k sin(ηΩ′

kt) |g1〉 |gk〉
N∏

j=2

|ij〉 |1〉, (5)

where Ω′
k =

√
Ω2

1 +Ω2
k.

Based on the above four equations, we can now
try to construct a three-qubit phase gate. By consid-
ering the quantum information encoded in a subspace
spanned by the atomic states {|g1〉, |e1〉, |g2〉, |i2〉,

|g3〉, |i3〉} for N = 3, with the computational basis
being {|g1〉|g2〉|g3〉, |g1〉|g2〉|i3〉, |g1〉|i2〉|g3〉, |g1〉|i2〉|i3〉,
|e1〉|g2〉|g3〉, |e1〉|g2〉|i3〉, |e1〉|i2〉|g3〉, |e1〉|i2〉|i3〉}, we can
assume that Ωt =

√
Ω2

1 +Ω2
2 +Ω2

3t = 2lπ/η. Then we
have from equation (3),

|e1〉|g2〉|g3〉|0〉 → |e1〉|g2〉|g3〉|0〉, (6)

which means there is no change. From equation (4), by
setting Ω1t = π/η, we have

|e1〉|i2〉|i3〉|0〉 → −|e1〉|i2〉|i3〉|0〉, (7)

which corresponds to a phase flip. For equation (5), if
we consider k = 2, and assume ηΩ2t =

√
Ω2

1 +Ω2
2t =

2mπ/η, the evolution of the state is

|e1〉|g2〉|i3〉|0〉 → |e1〉|g2〉|i3〉|0〉, (8)

which is also unchanged. By using the above condi-
tions for Ω, Ω1 and Ω′

2, we obtain
√
Ω2

1 +Ω2
3t =√

4(l2 −m2) + 1π/η, which yields the evolution from
equation (5) in the case of k = 3,

|ψ3(t)〉 =
[

Ω2
1

Ω2
1 +Ω2

3

cos(
√

4(l2 −m2) + 1π) +
Ω2

3

Ω2
1 +Ω2

3

]

|e1〉|i2〉|g3〉|0〉

+
Ω1Ω3

Ω2
1 +Ω2

3

[cos(
√

4(l2 −m2) + 1π) − 1]|g1〉|i2〉|e3〉|0〉

− i
Ω1

√
Ω2

1 +Ω2
3

sin(
√

4(l2 −m2) + 1π)|g1〉|i2〉|g3〉|1〉. (9)

We expect to have |e1〉|i2〉|g3〉|0〉 → |e1〉|i2〉|g3〉|0〉 from the
above equation, which implies cos(

√
4(l2 −m2) + 1π) =

1. However, it is obvious that this condition cannot be
met exactly. To satisfactorily make the best approxima-
tion to the condition, we assume l = 5 and m = 3, which
yields cos(

√
4(l2 −m2) + 1π) = cos(

√
65π) = 0.9810.

Then equation (9) reduces to

|ψ′
3(t)〉 = 0.9997|e1〉|i2〉|g3〉|0〉

− 0.0023|g1〉|i2〉|e3〉|0〉 − i0.024|g1〉|i2〉|g3〉|1〉
� 0.9997|e1〉|i2〉|g3〉|0〉. (10)

This approximation will be checked thoroughly later.
As the other states under consideration, includ-
ing |g1〉|g2〉|g3〉|0〉, |g1〉|g2〉|i3〉|0〉, |g1〉|i2〉|g3〉|0〉, and
|g1〉|i2〉|i3〉|0〉, remain unchanged in the evolution, an ap-
proximate three-qubit phase gate can be reached as fol-
lows:

|g1〉|g2〉|g3〉|0〉 → |g1〉|g2〉|g3〉|0〉,
|g1〉|g2〉|i3〉|0〉 → |g1〉|g2〉|i3〉|0〉,
|g1〉|i2〉|g3〉|0〉 → |g1〉|i2〉|g3〉|0〉,
|g1〉|i2〉|i3〉|0〉 → |g1〉|i2〉|i3〉|0〉,
|e1〉|g2〉|g3〉|0〉 → |e1〉|g2〉|g3〉|0〉,
|e1〉|g2〉|i3〉|0〉 → |e1〉|g2〉|i3〉|0〉,
|e1〉|i2〉|g3〉|0〉 → |e1〉|i2〉|g3〉|0〉,
|e1〉|i2〉|i3〉|0〉 → −0.9997|e1〉|i2〉|i3〉|0〉, (11)
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|ψspon(t)〉 = Ud(t)
N∏

j=2

|e1〉|gj〉|0〉 = exp

{

−it
[

N∑

j=1

ηΩj(a+S−
j + aS+

j ) − i
Γ

2

N∑

j=1

|ej〉〈ej |
]}

N∏

j=2

|e1〉|gj〉|0〉

=
{
Ω2

1

Ω2
exp

[

−Γt
4

] [

cos(AΓ t) − Γ

4AΓ
sin(AΓ t)

]

+
Ω2 −Ω2

1

Ω2
exp

[

−Γt
2

]}
N∏

j=2

|e1〉|gj〉|0〉

+
Ω1

Ω2

{

exp
[

−Γt
4

] [

cos(AΓ t) − Γ

4AΓ
sin(AΓ t)

]

− exp
[

−Γt
2

]}
N∑

k=2

Ωk|g1〉|ek〉
N∏

j=2,j �=k

|gj〉|0〉

− i exp
[

−Γt
4

]
Ω1

AΓ
sin(AΓ t)

N∏

j=1

|gj〉|1〉, (14)

|ψspon1(t)〉 = Us(t)
N∏

j=2

|e1〉|ij〉|0〉

= exp
[

−Γt
4

] {[

cos(A1Γ t) − Γ

4A1Γ
sin(A1Γ t)

]
N∏

j=2

|e1〉|ij〉|0〉 − i
Ω1

A1Γ
sin(A1Γ t)

N∏

j=2

|g1〉|ij〉|1〉]
}

, (15)

|ψsponk(t)〉 = Us(t)
N∏

j=2,j �=k

|e1〉|gk〉|ij〉|0〉

=
{
Ω2

1

Ω′2
k

exp
[

−Γt
4

] [

cos(AkΓ t) − Γ

4AkΓ
sin(AkΓ t)

]

+ exp
(

−Γt
2

)
Ω′2

k −Ω2
1

Ω′2
k

}
N∏

j=2,j �=k

|e1〉|gk〉|ij〉|0〉

+
Ω1Ωk

Ω′2
k

{

exp
[

−Γt
4

] [

cos(AkΓ t) − Γ

4AkΓ
sin(AkΓ t)

]

− exp
(

−Γt
2

)}
N∏

j=2,j �=k

|g1〉|ek〉|ij〉|0〉

− i exp
[

−Γt
4

]

ηΩ1/AkΓ sin(AkΓ t)
N∏

j=2,j �=k

|g1〉|gk〉|ij〉|1〉, (16)

from which we can easily obtain a Toffoli gate in our com-
putational subspace,

T = H3TPH3

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0.00015 0.99985
0 0 0 0 0 0 0.99985 0.00015

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

�

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(12)

where H3 is the Hadamard gate on the third ion and TP is
the operator for the evolution in equation (11). To achieve
equation (12), we should have Ω1 : Ω2 : Ω3 = 1 :

√
35 : 8

and t = π/(ηΩ1) from the above conditions for Ω, Ω1

and Ω3.
We now turn to study the influence of the sponta-

neous ionic emission on a three-qubit phase gate (or say,
a three-qubit Toffoli gate). The corresponding conditional
Hamiltonian [8] is,

Hsi =
N∑

j=1

ηΩj(a+S−
j + aS+

j ) − i
Γ

2

N∑

j=1

|ej〉 〈ej|, (13)

which is a non-Hermitian and where Γ is the spontaneous
emission rate. It is derived from the quantum jump ap-

proach [8]. Provided that the atoms and the collective vi-
brational mode are initially in the state

∏N
j=2|e1〉|gj〉 and

the vacuum state |0〉, respectively, we obtain the evolution
of the system before the leakage of a photon from the trap
happens,

see equation (14) above

where Ω =
√∑N

j=1Ω
2
j , and AΓ =

√∑N
j=1η

2Ω2
j − Γ 2/16.

As in the ideal case, we consider two other initial condi-
tions. If the N ions are initially in the state

∏N
j=2|e1〉|ij〉,

and the cavity mode in vacuum state |0〉, we have the
corresponding evolution

see equation (15) above

where A1Γ =
√
η2Ω2

1 − Γ 2/16. If the total system is ini-
tially in the state

∏N
j=2,j �=k|e1〉|gk〉|ij〉|0〉, the evolution of

the system is

see equation (16) above

with Ω′
k =

√
Ω2

1 +Ω2
k and AkΓ =√

η2Ω2
1 + η2Ω2

k − Γ 2/16, (k = 2, . . . , N). Assuming that√
η2Ω2

1 − Γ 2/16t = π,
√
η2Ω2

1 + η2Ω2
2 − Γ 2/16t = 6π,

and
√
η2Ω2

1 + η2Ω2
2 + η2Ω2

3 − Γ 2/16t = 10π, for N = 3,
resulting in cos

√
η2Ω2

1 + η2Ω2
3 − Γ 2/16t = cos

√
65π =

0.9810, we acquire an approximate three-qubit phase gate



560 The European Physical Journal D

T ′
P based on equations (14), (15), and (16)

|g1〉|g2〉|g3〉|0〉 → |g1〉|g2〉|g3〉|0〉,
|g1〉|g2〉|i3〉|0〉 → |g1〉|g2〉|i3〉|0〉,
|g1〉|i2〉|g3〉|0〉 → |g1〉|i2〉|g3〉|0〉,
|g1〉|i2〉|i3〉|0〉 → |g1〉|i2〉|i3〉|0〉,
|e1〉|g2〉|g3〉|0〉 → α1|e1〉|g2〉|g3〉|0〉 + α2|g1〉|e2〉|g3〉|0〉

+ α3|g1〉|g2〉|e3〉|0〉,
|e1〉|g2〉|i3〉|0〉 → β1|e1〉|g2〉|i3〉|0〉 + β2|g1〉|e2〉|i3〉|0〉,
|e1〉|i2〉|g3〉|0〉 → γ1|e1〉|i2〉|g3〉|0〉

+ γ2|g1〉|i2〉|e3〉|0〉γ1|e1〉|i2〉|g3〉|0〉
+ γ3|g1〉|i2〉|g3〉|1〉,

|e1〉|i2〉|i3〉|0〉 → −δ|e1〉|i2〉|i3〉|0〉, (17)

where

α1 =
1

Ω2
1 +Ω2

2 +Ω2
3

[Ω2
1e

−Γt/4 + (Ω2
2 +Ω2

3)e−Γt/2],

α2 =
Ω1Ω2

Ω2
1 +Ω2

2 +Ω2
3

[e−Γt/4 − e−Γt/2],

α3 =
Ω1Ω3

Ω2
1 +Ω2

2 +Ω2
3

[e−Γt/4 − e−Γt/2],

β1 =
1

Ω2
1 +Ω2

2

[Ω2
1e

−Γt/4 +Ω2
2e

−Γt/2],

β2 =
Ω1Ω2

Ω2
1 +Ω2

2

[e−Γt/4 − e−Γt/2],

γ1 =
1

Ω2
1 +Ω2

3

{Ω2
1e

−Γt/4[cos(
√

4(l2 −m2) + 1π)

− Γ

4AΓ3

sin(
√

4(l2 −m2) + 1π)] +Ω2
3e

−Γt/2},

γ2 =
Ω1Ω3

Ω2
1 +Ω2

3

{e−Γt/4[cos(
√

4(l2 −m2) + 1π)

− Γ

4AΓ3

sin(
√

4(l2 −m2) + 1π)] − e−Γt/2},

γ3 = −iηΩ1e
−Γt/4

AΓ3

sin(
√

4(l2 −m2) + 1π),

δ = e−Γt/4, t = π/Aκ1 � π/(ηΩ1). (18)

When Γ = ηΩ1/25, α1, α2, α3, β1, β2, γ1, γ2, γ3 and δ
are, respectively, equal to 0.9394, 0.0018, 0.0024, 0.9399,
0.0049, 0.9392, 0.0007, −0.0234i and 0.9691, leading to an
approximate three-qubit phase gate T ′

P .

T ′
P |g1〉|g2〉|g3〉|0〉 = |g1〉|g2〉|g3〉|0〉,
T ′

P |g1〉|g2〉|i3〉|0〉 = |g1〉|g2〉|i3〉|0〉,
T ′

P |g1〉|i2〉|g3〉|0〉 = |g1〉|i2〉|g3〉|0〉,
T ′

P |g1〉|i2〉|i3〉|0〉 = |g1〉|i2〉|i3〉|0〉,
T ′

P |e1〉|g2〉|g3〉|0〉 � 0.9394|e1〉|g2〉|g3〉|0〉,
T ′

P |e1〉|g2〉|i3〉|0〉 � 0.9399|e1〉|g2〉|i3〉|0〉,
T ′

P |e1〉|i2〉|g3〉|0〉 � 0.9392|e1〉|i2〉|g3〉|0〉,
T ′

P |e1〉|i2〉|i3〉|0〉 � −0.9691|e1〉|i2〉|i3〉|0〉, (19)

where we neglect the very small terms with a relative error
order of 10−4.Therefore, we can obtain an approximate

Toffoli gate for Γ/ηΩ1 = 1/25, by combining the phase
gate T ′

P and the Hadamard transform H3 on the third
qubit,

T ′ = H3T
′
PH3

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0.9396 −0.0003 0 0
0 0 0 0 −0.0003 0.9396 0 0
0 0 0 0 0 0 −0.0149 0.9451
0 0 0 0 0 0 0.9451 −0.0149

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

�

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0.9396 0 0 0
0 0 0 0 0 0.9396 0 0
0 0 0 0 0 0 0 0.9451
0 0 0 0 0 0 0.9451 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (20)

To check the fidelity of our proposed gate, we use equa-
tions (11) and (19) to prepare an entangled state from an
initial state,

|ϕ0〉 =
1

2
√

2
(|g1〉 + |e1〉)(|g2〉 + |i2〉)(|g3〉 + |i3〉). (21)

We have

|ϕideal〉 =
1

2
√

2
[|g1〉 (|g2〉 |g3〉 + |g2〉 |i3〉 + |i2〉 |g3〉

+ |i2〉 |i3〉) + |e1〉 (|g2〉 |g3〉 + |g2〉 |i3〉
+ |i2〉 |g3〉 − |i2〉 |i3〉)], (22)

and

|ϕdecay〉Γ=ηΩ1/25 =
1√

7.587
[|g1〉(|g2〉|g3〉+|g2〉|i3〉+|i2〉|g3〉

+ |i2〉|i3〉) + |e1〉(0.9394|g2〉|g3〉
+ 0.9399|g2〉|i3〉 + 0.9392|i2〉|g3〉
− 0.9691|i2〉|i3〉)]. (23)

So the fidelity and the corresponding success probability
are F = |〈ϕideal|ϕspon〉|2 = 0.9996 and P = 0.9484, for
Γ = ηΩ1/25. Our proposed gate contains some imper-
fection such as the spontaneous atomic emission. It ob-
viously has a high fidelity and high-success probability.
This should be compared with previous schemes in refer-
ence [8] which have been used to study two-qubit phase
gates based on a cavity QED system. It is noted that the
approximation in the ideal case produces a deviation of
the order of 10−5 on the fidelity and success probability
if we use the ideal three-qubit phase gate to prepare the
entangled state.

Now we will briefly discuss the experimental feasibility
of our proposed scheme. We may employ 40Ca+ ions for
our proposal with |ij〉, |gj〉, and |ej〉 given by the states
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S1/2(mj = 1/2), S1/2(mj = −1/2) and D5/2(mj = −1/2),
respectively [9]. From the derivation of [9], the possibility
exists of reaching the Lamb-Dicke limit and so obtain dif-
ferent precise couplings for the three ions confined in a lin-
ear trap, although addressing any more than two trapped
ions with precision has not been reported so far. Apart
from the general requirements of the LB quantum gate
proposal in reference [10], the new requirement is that the
lasers should have different specific intensities, satisfying
the gate gate condition Ω1 : Ω2 : Ω3 = 1 :

√
35 : 8. Since

the coupling strengths between the three ions and the laser
fields must be precisely controlled, the laser power must
be stable to within about ±0.5% [10] and the correspond-
ing positions of the ions in the trap must be also specif-
ically located, which is challenging. However, we believe
that our scheme is within the reach of current trapped ion
techniques.

As far as we know, our proposal gives the simplest im-
plementation of a Toffoli gate so far in a trapped ion sys-
tem. Although there is the spontaneous atomic emission
involved, we have shown that the achievable fidelity and
success probability are high enough to meet the require-
ment for quantum information processing and quantum
computation. For example, our scheme may be used for
a three-qubit Grover search to label the target qubit. So
far, a two-qubit Grover search has been proposed in cav-
ity QED [11–13] and in ion traps [14], and recently was
carried out in an ion trap [15]. But no experimental report
for a three-qubit Grover search has been found.

In conclusion, we have proposed a feasible scheme for
the realization of a three-qubit Toffoli gate based on a
single resonant interaction of the trapped ions with laser
fields. The scheme does not require two-qubit controlled-
NOT gates but uses a three-qubit phase gate and two
Hadamard gates to construct the Toffoli gate. It also
does not require using the vibrational mode as the data
bus and only requires one resonant interaction. The re-
quired interaction time is very short due to the reso-
nant interaction without involving many laser fields [16].
In fact, a fast two-qubit quantum gate between laser
trapped cold ions has been addressed by Jonathan et al.
in reference [10], which is based on the ac stark shift
induced by the laser light resonant with the ionic tran-
sition frequency of two-level ions and requires specific
laser intensities. In that scheme, six pulses are required
for the implementation of a C-NOT gate, consisting of
three one-qubit and three two-qubit operations. The re-
quired duration is about (2/ην) × 3 = 60/ν, where
η = 0.1. The realization of the Toffoli gate with the
method in reference [10] requires two-C-NOT gate op-
erations and the corresponding time is about 120/ν. In
contrast to reference [10], three three-level ions are con-
sidered in our scheme and the computational basis is com-
posed of {|g1〉|g2〉|g3〉, |g1〉|g2〉|i3〉, |g1〉|i2〉|g3〉, |g1〉|i2〉|i3〉,
|e1〉|g2〉|g3〉, |e1〉|g2〉|i3〉, |e1〉|i2〉|g3〉, |e1〉|i2〉|i3〉}. For η =
0.1 and Ω = ν/2 [10], the duration of implementation
of the Toffoli gate is about 20π/ν, which is shorter than
that in reference [10] and the number of required pulses
is also fewer than that in reference [10]. Furthermore, dis-

sipation due to spontaneous ionic emission is involved in
our scheme, which was not considered in reference [10].
We have also paid attention to the review paper on
ion trap quantum computing by Šašura and Bužek [17],
where a summary on the quantum gates, in which dissipa-
tion had not been considered, was given. Both situations
in the presence and in the absence of the spontaneous
atomic emission have been considered in our scheme. Com-
pared with the previous schemes for two-qubit quantum
gates [5,6,8,10,12,17], our scheme can simplify the opera-
tional steps in the realization of the Toffoli gate with high
efficiency. We believe that the present proposal should
be useful for advances in trapped ion experiments and
is within the reach of current trapped ion techniques.
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